	Complete the following table.			
	Compound	Flame colour		
	Lithium chloride		1	
	Sodium bromide			
	Potassium iodide			
			_	
<i>(</i> ''')				
(ii)	Explain the origin of the colours	in flame tests.		
	ese compounds can also be distinguis ohuric acid. State what would be seen when c			
	solid samples of each of these con		-	
	Lithium chloride			
	Sodium bromide			
	Potassium iodide			

1.

Explain the term oxidation in terms of electron transfer.
Explain the term oxidising agent in terms of electron transfer.
State which of the elements chlorine or bromine is the stronger oxidising agent and explain the importance of this in the extraction of bromine from seawater, as represented in the equation above.
Then sodium chlorate(I), NaClO, is heated, sodium chlorate(V) and sodium chloride are rmed.
Write the ionic equation for this reaction.
What type of reaction is this?
/ D:

Seawater contains aqueous bromide ions. During the manufacture of bromine, seawater is

2.

(a)

	(c)	Duri	ng one process for the manufacture of fodine the following reaction occurs:	
			$2IO_3 + 5SO_2 + 4H_2O \rightarrow I_2 + 8H^+ + 5SO_4^{2^-}$	
		(i)	Deduce the oxidation number of sulphur in:	
			SO ₂	
			SO ²⁻	(2)
		(ii)	Use your answers to part (c)(i) to explain whether \mathbf{SO}_2 has been oxidised or reduced in the above reaction.	
				(1)
		(iii)	Name a reagent that could be used to confirm that a solution contains iodine, and state what would be seen .	
			(Total 12 ma	(2)
			(Total 12 ma	11 KS)
3.	(a)		rogen chloride can be made from sodium chloride and concentrated sulphuric acid. e a balanced chemical equation to represent this reaction.	
				(1)
				(-)
	(b)	(i)	How would you confirm that a solution said to be HCl(aq) contained chloride ions?	
				(3)
		(ii)	Hydrogen chloride is soluble in water. Explain why the solution is acidic.	

			(2)
(c)	(i)	Give a chemical test for chlorine, stating what you would do and what you would see.	
			(2)
	(ii)	Hydrogen chloride can be oxidised to chlorine by lead(IV) oxide, PbO ₂ . Write the oxidation numbers of lead and of chlorine in the boxes provided. PbO ₂ + 4HCl \longrightarrow PbCl ₂ + Cl ₂ + 2H ₂ O	(2)
(d)		um iodide reacts with concentrated sulphuric acid to give iodine, not hydrogen le. Explain why iodides react differently from chlorides in this case.	
		(Total 12 m	(2) narks)

4.	(a)	Dedu	uce the oxidation number of iodine in the following species.	
		(i)	I ₂ O ₇	(1)
		(ii)	IO -	
				(1)
	(b)		ne, I_2 , can be reduced to iodide ions, Γ , by tin(II) ions, Sn^{2^+} , which are themselves ised to tin(IV) ions, Sn^{4^+} .	
		(i)	Construct the oxidation and reduction half-equations for the above system.	
				(2)
		(ii)	Use the above half-equations to construct the overall ionic equation for the reaction.	
			(Total 5 ma	(1) rks)
5.	(a)		rogen chloride can be prepared by reacting concentrated sulphuric acid with solid um chloride.	
			Write an equation for the reaction which occurs. State symbols are not required.	
				(2)
	(b)		en concentrated sulphuric acid is added to solid sodium bromide, the products of the tion include sulphur dioxide and bromine.	
			$2H_2SO_4 + 2NaBr \rightarrow Br_2 + SO_2 + 2H_2O + Na2SO_4$	
		Sulp	hur and bromine change oxidation number in this reaction.	

Write the oxidation numbers at the start and the end of the reaction.

(i)

	Sulphur changes from to	(1)
	Bromine changes from to	(1)
(ii)	Explain why the numbers in the balanced equation are consistent with the changes in oxidation number.	
		(2)

(c) The boiling points of three hydrogen halides are shown below

Hydrogen halide	Boiling point /K
Hydrogen chloride	188
Hydrogen bromide	206
Hydrogen iodide	238

		(i)	Explain the trend in boiling point of the three hydrogen halides.
			(2)
		(ii)	Predict a value for the boiling point of hydrogen fluoride. Explain your reason for choosing this value.
			Predicted value
			Explanation
			(3) (Total 11 marks)
6.	(a)	Defi	ne reduction in terms of change in oxidation number.
		•••••	
			(1)

(b)		reaction between solid sodium halides and concentrated sulphuric acid changes as the p is descended.	
	(i)	Complete the balancing of the equation for the reaction of sodium bromide with concentrated sulphuric acid.	
N	NaCl	+ H_2SO_4 $\rightarrow NaHSO_4$ + HCl	
21	NaBr	+ $H_2SO_4 \rightarrowNaHSO_4$ + SO_2 + Br_2 + H_2O	
8	3NaI	+ $9H_2SO_4$ $\rightarrow 8NaHSO_4 + H_2S + 4I_2 + 4H_2O$	(1)
	(ii)	Write the oxidation numbers of sulphur in the following:	
		H_2SO_4	
		NaHSO ₄	
		SO ₂	
		H ₂ S	(2)
	(iii)	Use the changes in oxidation number of sulphur in the reactions in (i) to show that the halides become more powerful reducing agents as the group is descended.	

(2)

(Total 6 marks)

7.	This question	is about th	e manufacture	of bromine	from	bromide ions	found in seawater.
----	---------------	-------------	---------------	------------	------	--------------	--------------------

- (a) In the first step, chlorine gas is bubbled into acidified seawater. This converts the bromide ions to bromine. The low pH prevents hydrolysis of the liberated bromine.
 - (i) Complete and balance the equation for the hydrolysis of bromine with water which is a disproportionation reaction.

 $Br_2(aq) + H_2O(1) \rightleftharpoonsH^+(aq) +$ (2)

(ii)	What is the meaning of the symbol \rightleftharpoons ?	
		(1)
		(1

(iii)	Explain, using oxidation numbers, why this reaction is known as disproportionation.

(iv) Write the ionic equation, including state symbols, for the reaction of chlorine gas with bromide ions.

(2)

(2)

(b)	In the second step, air is blown through the reaction mixture to remove the bromine as a
	vapour which is then mixed with sulphur dioxide gas and water vapour.

The unbalanced equation for this reaction is $Br_2 + H_2O + SO_2 \rightarrow H^+ + Br^- + SO_4^{2-}$

(i) Identify the elements which are oxidised and reduced and give their oxidation numbers.

Element **oxidised**

Oxidation number initial final

Element **reduced**

Oxidation number initial final

(2)

(ii) Using this information, or otherwise, balance the equation.

$$Br_2 + H_2O + SO_2 \rightarrow H^+ + Br^- + SO_4^{2-}$$

(1) (Total 10 marks)

- **8.** Which of the following statements is FALSE?
 - **A** iodine is more electronegative than bromine.
 - **B** fluorine is more electronegative than chlorine.
 - C metallic elements tend to react by loss of electrons.
 - **D** chlorine is more electronegative than sulfur.

(Total 1 mark)

9. Chlorine was used in swimming pools as a bactericide.

The amount of chlorine present can be determined by adding excess potassium iodide solution to a known volume of swimming pool water. This reacts to form iodine:

$$Cl_2(aq) + 2I^{-}(aq) \rightarrow I_2(aq) + 2Cl^{-}(aq)$$

The amount of iodine formed is then found by titration with sodium thiosulfate solution of known concentration.

The ionic equation for the reaction between iodine and sodium thiosulfate in aqueous solution is

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$

A student carried out the determination of chlorine in a sample of swimming pool water. A record of the measurements obtained is given below:

Volume of water sample tested = 1000 cm^3

Final reading of burette = 16.3 cm^3

Initial reading of burette $= 7 \text{ cm}^3$

Volume added from burette = 9.3 cm^3

Concentration of sodium thiosulfate solution $= 0.00500 \text{ mol dm}^{-1}$

(a) (i) The record of measurements reveals faults both in the procedure and the recording of measurements. State one fault in each of these.

Procedure

Recording of measurements

.....

(ii) Calculate the number of moles of sodium thiosulfate used in the titration.

(1)

(2)

	(iii)	Use your answer to (ii) to calculate the number of moles of iodine which reacted.	
	(iv)	Deduce the concentration of chlorine, in mol dm^{-3} , in the swimming pool water.	(1)
			(1)
(b)		disinfecting action of chlorine in swimming pools is due to the presence of chloric(I) HClO, formed by the reaction of chlorine with water.	
	This	any swimming pools, chemicals other than chlorine are used to form chloric(I) acid. is partly because the use of chlorine gas causes much more corrosion of metal parts rimming pools than does chloric(I) acid.	
		pounds used to chlorinate swimming pool water in this way include calcium rate(I) and chlorine dioxide.	
	(i)	State and explain the type of reaction that occurs when chlorine attacks a metal, using the example of iron.	
			(2)
	(ii)	Suggest one other reason why the use of chlorine is undesirable in swimming pools.	
			(1)
	(iii)	Give the formula for calcium chlorate(I).	
			(1)
	(iv)	Chlorine dioxide, ClO ₂ , undergoes a disproportionation reaction when it reacts	

with water.

$4\text{ClO}_2 + 2\text{H}_2\text{O} \rightarrow \text{HClO} + 3\text{HClO}_3$	
Explain, in terms of oxidation numbers, why this is a disproportionation reaction.	
	(2)

(c)	Discuss and explain the science community's advice that CFCs should no long in aerosols, foams and refrigerants. Support your answer with one or more equal to the community of	ger be used ations.
		•••••
		•••••
		(6) (Total 17 marks)

10.	(a)	Define the term oxidation number .	
			(2)
	(b)	The equation below shows the disproportionation of chlorine.	
		$Cl_2(g) + H_2O(l) \rightarrow HClO(aq) + HCl(aq)$	
		(i) Underneath the chlorine-containing species write the oxidation number of chlorine in each case.	(1)
		(ii) Use these oxidation numbers to explain the term disproportionation .	
			(2)
	(c)	Explain why hydrogen chloride forms an acidic solution when dissolved in water.	
			(2)

	(u)	identification of chloride, bromide and iodide ions in aqueous solution.	
		(Total 13 mar	(6) ks)
11.		um and magnesium are both in Group 2 of the Periodic Table. Several bottles on the Group elf of the chemicals store had damaged labels.	
	(a)	Two bottles are clearly labelled 'sulphate'. The solid in bottle A dissolves easily in water but none of the solid in bottle B appears to dissolve when added to water.	
		Which of these two bottles contains barium sulphate?	(1)
	(b)	Bottle C , labelled 'magnesium carbonate', contains a white powder. When heated this powder produces a colourless gas that turns limewater cloudy. State whether this label is correct and explain your answer.	
			(2)
	(c)	Describe a test to show that the solid in bottle D is barium hydroxide and not magnesium hydroxide.	
			(3)
	(d)	Bottle E is clearly labelled 'magnesium nitrate'. When a sample of the chemical is heated it gives off a brown gas and a gas that relights a glowing splint.	

		Give react	the name of each of the gases formed and write an equation for this chemical tion.	
				(4) 0 marks)
12.	(a)	(i)	State how a flame test would distinguish between samples of calcium nitrate, $Ca(NO_3)_2$ and barium nitrate, $Ba(NO_3)_2$.	
				(2)
		(ii)	Explain the origin of the flame colour.	
	(b)	Writ	e the equation for the action of heat on barium nitrate.	(3)
				(2)

	(c)	(i)	What is meant by the term polarising power as applied to cations?		
				(2)	
		(ii)	Give two factors which affect the polarising power of cations.		
				(2)	
		(iii)	Use this information to explain why it is easier to decompose magnesium than barium nitrate by heating.	nitrate	
				(3) (Total 14 marks)	
13.	(a)	Com	plete and balance the following equations:		
		(i)	$Ca + O_2 \rightarrow \dots$	(1)	
		(ii)	$Na_2O + H_2O \rightarrow \dots$. (1)	
		(iii)	$Na_2O + HCl \rightarrow$	(2)	

	(b)		e and explain the trend in thermal stability of the carbonates of the Group 2 te group is descended.	elements
		•••••		
				(3)
				(Total 7 marks)
14.			n oxide is a basic oxide which produces an alkaline solution with water. We show how the oxide ion, O^{2-} , acts as a base in the reaction with water.	ite an
	•••••	•••••		 (Total 1 mark)
15.	(a)		uplete and balance an equation for each of the following reactions. Do not in symbols.	nclude
		(i)	Ba + $H_2O \rightarrow \dots$	(1)
		(iii)	NaCl + $H_2SO_4 \rightarrow \dots$	(1)
	(b)	State	e the flame colours produced by compounds of:	
		(i)	barium	(1)
		(ii)	lithium	(1)

	(c)	Explain now compounds of elements in Groups 1 and 2 produce colours in the flame test.
		(3)
	(d)	When potassium is burnt in excess oxygen, a compound is produced that contains 54.9 % potassium.
		Calculate the percentage of oxygen present and hence calculate the empirical formula of this compound.
		(3)
		(Total 10 marks)
16.	(a)	Write the equations to show the action of heat on the following solid nitrates. State symbols are not required.
		(i) lithium nitrate, LiNO ₃ .
		(ii) caesium nitrate, CsNO ₃ .
		(1)
	(b)	The solubilities of the sulphates and hydroxides of calcium and barium are shown below. Use the information in the table to answer the questions that follow.

Substance	Solubility	Substance	Solubility
CaSO ₄	slightly soluble	Ca(OH) ₂	slightly soluble
BaSO ₄	insoluble	Ba(OH) ₂	soluble

(i)	Both calcium and barium metals react with water to give the metal hydroxide and hydrogen gas.	
	What difference would you expect to see after calcium metal and barium metal have reacted with water?	
		(2)
(ii)	The reaction between barium metal and excess dilute sulphuric acid stops after a very short time. Suggest an explanation for this.	
		(2)

(c)	Suggest the solubility in water of radium sulphate. Put a cross (\boxtimes) in the correct box.

A	Very soluble	X
В	Soluble	X
C	Slightly soluble	X
D	Insoluble	X

(1)

	(d)	Write the ionic equation for the reaction of calcium metal with dilute hydrochloric acid. Include state symbols in your equation.					
			(Total 10 i	(2) narks)			
17.	(a)	State the flame colours of					
		(i)	barium				
				(1)			
		(ii)	strontium				
				(1)			
	(b)		n barium is burnt in excess oxygen a compound containing 81.1% barium and 18.9% tygen is formed.				
		Calc	ulate the empirical formula of this compound.				
				(2)			
	()	(')					
	(c)	(i)	Write the equation for the reaction of barium with water. Do not include any state symbols.				

(1)

		(ii)	When a small piece of barium is added to water, the barium gets smaller are eventually disappears.	nd
			State TWO other observations you could make.	
				(2)
		(iii)	What would be the effect of adding a piece of blue litmus paper and a piece litmus paper to the aqueous product of the reaction in (ii)?	e of red
			Red litmus	
			Blue litmus	. (1)
				(Total 8 marks)
18.		ch conc me test	centrated acid should be used to dissolve a carbonate of a Group 2 metal to c?	arry out
	A	ethan	noic acid	
	В	hydro	ochloric acid	
	C	nitric	acid	
	D	sulfu	ric acid	(Total 1 mark)

19.	What colour does a barium salt give in a flame test?					
	A	colourless				
	В	green				
	C	red				
	D	yellow-red (Total 1 mark)				
20.		rate flame tests are carried out with lithium, sodium, potassium, magnesium, calcium and tium salts. How many of these metal ions would colour the flame red?				
	A	1				
	В	2				
	C	3				
	D	4 (Total 1 mark)				
21.	21. A Group 2 element reacts vigorously with water to produce a soluble hydroxide, which forms a white precipitate when neutralised by sulfuric acid and forms a carbonate which is very stable to heat. The element could be					
	A	magnesium				
	В	calcium				
	C	strontium				
	D	barium (Total 1 mark)				

22	The Groun	2 matala	considered	in order c	fincrocino	atomic number	chown o	laaraasa ir
ZZ.	The Group	j z ilietais.	Constaerea .	m oraer c	or increasing	g atomic mumber	, snow a c	iecrease ii

- **A** first ionisation energy
- **B** nuclear charge
- C chemical reactivity
- **D** ionic radius

(Total 1 mark)